Reconstructing fluid circulation pathways in volcanically influenced settings: a case study from the Namibe Basin (Angola)

Fiordalisi Eduardo¹, do Couto Ramos Pereira, G.¹, Rochelle-Bates, N.¹, Marchegiano, M.², John, C.², Dixon, R.₃, Sharp, I.₄, Schröder, S.⁵

1: University of Manchester; 2: Imperial College London; 3: BP Exploration; 4: Equinor, Exploration Research and Technology
E-mail: eduardo.fiordalisi@manchester.ac.uk

1. Objectives and implications

Creating a depositional and diagenetic model for the continental spring carbonates in the Namibe Basin in order to provide a better understanding of plumbing system geometries, fluid sources, fluid interaction with surrounding sediments and mechanisms leading to carbonate precipitation in volcanically influenced settings.

2. Geological setting of the Namibe Basin

- Developed as part of the South Atlantic rifting (Fig. 1).
- Overall syn-rift to sag continental/lacustrine setting vs. post-rift marine setting (Fig. 2).
- Non-marine carbonate setting temporarily re-established in the post-rift after renewed tectonism and magmatism (study interval).

3. Facies and depositional model

- Carbonate spring mound systems mostly occurring along faults, characterised by distinctive travertine vent & slope facies and lacustrine deposits (Fig. 3).
- Mixed subaerial/lacustrine environment, possibly evolving into a fully lacustrine setting (Fig. 4).

4. Fluid sources and fluid evolution

- Pervasive matrix dolomitisation (fabric preserving) and dolomite cement overgrowths (Fig. 5).
- δ^{13}C_PDB (Fig. 6A) reflect infiltrated groundwater undergoing degassing at surface.
- δ^{18}O_PDB (Fig. 6A) reflect temperature decrease away from vent facies and meteoric/slightly saline waters (A_{K} temperatures between 55 and 32 °C and A_{K}^{18}O between -1.4 and 2.6).
- 87Sr/86Sr suggest fluid circulation through surrounding magmatic deposits, which could have acted as Mg source for dolomitisation (Fig. 6B).
- Intense fracturing and silicification postdating dolomitisation (Fig. 7). FI on silica suggest temperatures between 70 and 260 °C, which might relate to a later stronger magmatic pulse.

5. Conclusions

- Plumbing system mostly fed by infiltrated and heated groundwater.
- Faults represent the main conduits for upward fluid circulation.
- Depositional and diagenetic fluids probably exploited the same plumbing system.
- Fluid circulation was probably fairly local.

6. Acknowledgements

Thanks to NERC CDT in Oil and Gas for funding this project. BP and Equinor are also thanked for providing additional funding, samples and logistic support.