Meetings Library

Here are links to the exciting range of past webinars and meetings that have been hosted by Seds Online! If you have a speaker suggestion, please fill out this form.

N.B. Due to content confidentiality, it will not be possible to record and make all presentations available.

Glacial Mars and its Morphological Mysteries

Dr Frances Butcher – University of Sheffield


In the present day, Mars’ mid-to-high latitudes host abundant water ice within diverse and stunning glacial landscapes. In this talk, I will explore the recent history of glaciation and glacial meltwater on Mars, and discuss some of the morphological mysteries that remain.

A Big Fan of Signals? Exploring Autogenic and Allogenic Processes in Lobyte3D, a Numerical Stratigraphic Forward Model of Submarine-Fan Development

Professor Peter Burgess – University of Liverpool

Strata may contain a signal that records the history of the tectonic and climatic forcing that controls how they form, and many conceptual models tie themselves in logical knots by assuming that these signals are always present in the strata. More interesting than assuming that a signal is present is testing what the signal might look like if it was present, and exploring how it can be extracted from the noise and autogenic patterns that may also be present. This presentation will show some results from numerical experiments using Lobyte3D, a simple stratigraphic forward model of a deep-water fan system, to investigate how an external signal is recorded, and how it can be distinguished, or not, from the autogenic patterns also present in the strata.

Emerging technologies to improve quantitative interpretations of carbonate rock images

Cédric John – Imperial College London

Geology has traditionally been a descriptive science with a significant portion of the data coming from observations of features at a range of scales. Modern practices in the oil industry still rely in a large part on this legacy of observational data, for instance when rock facies are used to derive regional stratigraphic trends from core data, or as a building block for petrophysical classifications. However, a recent study has shown that even experienced carbonate sedimentologists will often classify the same facies using different textural names. This problem is compounded in industry by large teams often collaborating on a project, resulting in a heterogeneous attribution of facies to similar rocks despite the use of a common classification scheme. This problem reduces the reliability of descriptive data. In this presentation, I will talk about our research applying machine learning to automatic identification of carbonate facies using the Dunham classification scheme. We used high-resolution core images from the Integrated Ocean Discovery Program (IODP) Leg 194. Core images are used to train a model written in the Python programming language using the TensorFlow machine learning library. Specifically, we used Google’s Inception V3 network as a pre-trained Convolutional Neural Network (CNNs), and applied a method called ‘transfer learning’ to train Inception V3 to recognize carbonate core images. Results show that our CNN can achieve up to 90% accuracy for identification of Mudstone to Rudstone and Crystalline Dolomite. The main misclassifications were between matrix and grain supported facies, and fine and coarse-grained facies, textures also commonly misclassified by control tests with geologists. Interestingly, the bias observed in core description by the algorithm is very similar to human biases: a tendency to give a greater weight to grains as they stand out from the matrix, called ‘saliency’. But the CNNs were able to identify facies 60 times faster than humans, and with a much greater consistency. The results of our study demonstrate the potential of artificial neural networks to reliably interpret and quantify descriptive data for the oil and gas industry, in a fast, automated, high-resolution manner. Current and future work will focus on acquiring a larger dataset of core and thin section images, improving the training of the neural network, and coupling image recognition with logging and petrophysical data estimation.

Deep water sediment deposition from hybrid contour-turbidity currents; first process models for mixed depositional systems based on laboratory experiments

Dr. Joris T. Eggenhuisen (speaker), E. Miramontes, R. Silva Jacinto, J. Hernández-Molina, F. Pohl, G. Poneti, and collaborators

Utrecht University

Two types of currents dominate sediment transport and deposition on continental slopes: sediment gravity flows that travel down the slope through submarine canyons, channels, and gullies; and bottom currents that are part of the ocean circulation and commonly flow along the slope. Continental slope morphologies reported from mixed sediment gravity flow – bottom current systems across the planet reflect various degrees of interaction between sediment gravity flows and bottom currents. Unfortunately, two communities of researchers have historically specialized in either gravity driven sediment transport or bottom current sediment transport. Consequently, the processes governing sediment transport and deposition in mixed systems are not clearly established and interpretations of mixed-system deposits in literature remain hypothetical and sometimes appear contradictory. In this seminar we will present the first measurements of combined contour-current and turbidity-current flows, which were obtained in laboratory experiments. The measurements demonstrate that contour currents flowing at 10 % of the turbidity current speed can pervasively deflect the turbidity current flow and prove for the first time that hybrid bottom-turbidity currents can be at the origin of asymmetric channel-levee systems. These first experiments are the starting point for discussions on the themes that need to be addressed by the deep water community to achieve an integrated understanding of sediment deposition in deep water environments by contour currents and turbidity currents. a tool for teaching Glaciers and Glaciation to high school and college students

Dr Bethan Davies – Royal Holloway University of London

This talk targets teachers and college lecturers who will be delivering Glaciers and Glaciation as part of Geography or Geology at High School or College (post ~16 years). This could be as part of the UK A-Level syllabus, for example.

In this freely available, online talk, I will outline the key features of the website and how it can be used to support your teaching through providing interesting and informative content, case studies and student activities. There will then be an opportunity for discussion and Q&A, where teachers will have the opportunity to ask questions, and to give feedback on the website and make suggestions. is an award-winning website that offers a freely available, accessible, up-to-date and trustworthy source of information about glacial processes and climate change. It is supported by Royal Holloway University of London, the Quaternary Research Association, Geologists’ Association, Scientific Committee for Antarctic Research and the British Society for Geomorphology.

This website, which was written by UK academics as part of an ongoing commitment to education, outreach and impact, includes teaching resources, student projects, explainers, and study skills targeting the knowledge content and skills development in the current post-16 Geography syllabus.

Personal stories and blog articles bring the most recent research to life. Science articles are illustrated with maps, diagrams and photographs and range from explanations of the key processes of glaciers, glaciation and climate change, to articles about Antarctica, the Patagonian Ice Sheet and the British Ice Sheet.

For more information, visit or email

An introduction to OSL Dating and luminescence signals

Dr Gloria I. López – National Research Centre on Human Evolution (CENIEH) Recanati Institute of Maritime Studies (RIIMS) at the University of Haifa, Israel

“To see the World in a grain of sand… hold infinity in the palm of your hand and eternity in an hour” might be one of the best poetic descriptions for Luminescence Dating… sure, back in 1803, William Blake could not have imagined such scientific achievement! As a matter of fact, Optical Dating or OSL (Optically Stimulated Luminescence) has been one of the fastest growing dating methods since its development in 1985, in terms of protocol development, instrumentation and use. Who would have thought that a single ray of sunshine and the natural radioactive decay ever present in the environment would be allies for OSL signals to shine! As it uses two of the most abundant mineral grains available on the surface of the Earth (quartz & feldspars), OSL has a multitude of applications in addition to the ability to assign numerical ages to numerous environments and sedimentary deposits from the depths of the ocean to the highest peaks. In this presentation we will go over the basics of OSL Dating, and consider some of the major challenges, as well as the advantages. We will have a glimpse at the latest developments and applications, with a special focus on sedimentological and stratigraphical issues. One thing to bear in mind: OSL might not be used only for dating! The in-depth analysis of luminescence signals may give unforeseen insights into transport-deposition processes and events of both natural and anthropogenic origin.

Virtual Graphic Logs: applications for teaching and research

Professor Charlie Bristow – Birkbeck University of London

Virtual graphic logging is potentially a valuable resource for sedimentary research and teaching. One objective of a virtual graphic log is to provide training in key geological field skills in a classroom environment. Creating a graphic log involves observation, recording rock descriptions and is a precursor to facies analysis and the interpretation of depositional environments. Drawing a graphic log aids observational skills and recording of sedimentary rocks through experiential learning. The aim of a virtual log is not to replace field work, except in exceptional circumstances such as the current COVID-19 pandemic, but to enable students to learn key skills before they go into the field. The exercise also has the added long-term benefit of accommodating students with disabilities to cultivate a more inclusive classroom environment and diverse student population. For research, online storage of digital photographs makes it possible to store and share digital photographs that form the data required to create virtual graphic logs. The virtual logs provide a more open science approach to outcrop interpretation, enabling researchers to visit outcrops virtually and make their own descriptions and interpretations.

More resources HERE!

How to Approach a Review

Peir Pufahl – Queen’s University

Your project is completed. The results are in and the outcomes are, frankly, fantastic! It’s now time to share your research with the wider community – it’s time to publish. Writing your first manuscripts for publication can be a daunting task.

• How do I select an appropriate journal for my topic?
• How should I organise the manuscript?
• How long should it be?
• What are the key elements that the editors are going to look for?
• What can I do to increase visibility on search pages?
• I am not confident whilst writing in English – is there any help?
• These are just some of the plethora of questions raised by new authors.

Observing turbidity currents in the wild: New insights from direct field-scale measurements

Dr Mike Clare – National Oceanography Centre

Avalanches of sediment in the ocean, called turbidity currents, are among the volumetrically most important sediment transport processes globally. Due to their fast speeds, turbidity currents can break critical infrastructure, and transport organic carbon and nutrients far into the deep-sea, thus sustaining deep-sea ecosystems. Until recently, we have largely had to rely on the deposits that they left behind or small-scale flows held ‘captive’ in the laboratory to understand turbidity currents. New developments in technology now enable detailed and direct measurements of powerful flows at field scale to complement these studies. Here, we present recent measurements gathered by a large consortium of researchers from a range of shallow to deep-marine settings worldwide that provide new insights into the internal anatomy of these these flows, how they initiate, evolve and interact with the seafloor.

Sequence stratigraphy of late Paleozoic cyclothems; a signal of sediment undersupply, large-magnitude sea-level changes and low accommodation

Professor Christopher R. Fielding – University of Nebraska-Lincoln

Cyclothems are stratal rhythyms comprising repetitive vertical successions of sandstones, heterolithic (thinly interbedded) sandstones and mudrocks, mudrocks, limestones, and coals, in many cases with pedogenic overprinting of these lithologies. They record repetitive alternations of shallow marine and coastal to nonmarine environments of deposition. They are typical of Carboniferous and Permian paleotropical successions across Euramerica. Controversy endures as to whether cyclothems were formed under external forcing or rather were the product of mainly autogenic processes. Careful mapping and correlation of cyclothem strata and use of a sequence stratigraphic methodology allows a fuller understanding of these enigmatic rhythms. Depositional sequences can be identified and correlated over 100s of km, based on the recognition of regionally extensive disconformity surfaces and the continuity of key marker beds. Erosional surfaces preserve deeply incised valleys, separated by relatively flat interfluves represented by pedogenically modified strata. Sequences bounded by these surfaces are < 2 to > 30 m in thickness, varying considerably in thickness and facies composition but nonetheless preserving predictable arrays of facies that record deepening and shallowing trends. Because of the limited thickness of cyclothems, it is difficult to apply the accommodation succession concept to these deposits. Rather, cyclothem sequences are thin, incomplete, condensed, strongly top-truncated, and have a ragged blanket geometry. Although the term “cyclothem” has been used in a variety of contexts, a definition of the term limited to successions that were deposited (1) on low-gradient pericontinental shelves in paleotropical regions, (2) as far-field products of Gondwanan glacial growth and decay at various timescales, and (3) under conditions of low sediment supply in most cases, and (4) under low accommodation limited by slow, passive subsidence is herein preferred.

The evolution of the Patagonian Ice Sheet from 35 ka to the Present Day (PATICE)

Dr Bethan Davies – Royal Holloway University of London

The Patagonian Ice Sheet was an ice sheet characterised by a wide variety of environments, including glaciolacustrine, land-terminating lowland lobes, high mountain glaciers and glaciomarine environments. It dammed large lakes that grew as it receded, which were an important control on ice dynamics. Here we present an overview of the variety of sediment-landform assemblages produced, and use these together with 1669 published ages to reconstruct Patagonian Ice Sheet evolution over the last 35,000 years, from the Last Glacial Maximum to the present day. We use these datasets to untangle the climatic and ice dynamical controls on ice recession, and find that current recession, driven by a persistent negative phase of the Southern Annular Mode, is exceptional within the Holocene.

Please find out more information using the links below:

The world’s most unloved sedimentary structures: a new process model for flutes and tool marks

Professor Jeff Peakall – University of Leeds

Aggradational bedforms, from dunes to cyclic steps, are the subject of dozens of papers each year, producing lots of startling discoveries. These bedforms tell us about the flows that formed them and in turn aid interpretation and prediction. In contrast, sole structures have been almost entirely neglected for 50 years; unloved, ignored, and whose only role is to tell geologists which way the flow went. Here we present a new process model of flutes and tool marks in deep-marine environments that tackles a host of long-standing conundrums, and examines under what flow types these structures form. We finish by looking at the implications of the work including a revised Bouma Sequence diagram.

Instructional Webinar Series: A (Self-Confessed) Beginners Guide to Running a Virtual Fieldtrip

Gary Hampson & Lidia Lonergan – Imperial College London

We will present some learnings and practical tips from an 8-day virtual fieldtrip to the Spanish Pyrenees for a class of 35 MSc (Masters) students in early April. Although the format of this fieldtrip was new to us, we had previously lead the fieldtrip in Spain for several years – so had good knowledge of the fieldtrip learning goals and how they could be addressed by the fieldtrip location. The webinar will be focussed towards those leading and teaching virtual fieldtrips in the near future: where to pitch your and your students’ expectations, how to prepare and convert material, what worked well for teaching and assessment, and what didn’t work so well.

This new carbonate-focused forum was a virtual event and will provided an opportunity for a diverse range of postgraduate and early career researchers to present their work to a like-minded audience. We discussed the advances in scientific research across the broad sphere of carbonate geology, including modern and ancient carbonate sedimentology, climate research, geobiology, geochemistry and numerical modelling

Instructional Webinar Series: The academic job search: tips for preparing your application materials

Professor Tracy Frank – University of Nebraska

Do you dream of landing a faculty position? If so, please join us for this presentation, which will provide you with tips on how to prepare your application materials. We’ll also review the typical stages and practical steps involved in seeking and obtaining your first faculty position.

A journey through tides in Earth’s History

Professor Mattias Green – Bangor University

The scientific endeavours of the Apollo Lunar missions provided two important, yet apparently contradictory, pieces of information. The lunar rock samples aged the Moon at 4.5Gy, whilst laser ranging measurements of present day lunar recession, facilitated by reflectors left on the Moon, imply an age of only 1.5Gy. It is evident that least one of these estimates must be wrong! We now know that Earth, because of its current continental configuration, has a very energetic tide. Because the dissipation of tidal energy act as a break on Earth’s rotation and thus forces the moon to recede, it is also a first order controller of lunar distance. Is it possible that the motion of continents has changed the tides enough on geological scales to facilitate a weaker tide that can reconcile the two age estimates of the moon? Here, I am hoping to answer this question by going on journey through Earth’s history and estimating the tidal energetics for a series of interesting time slices. I will also touch upon what the consequences may have been for other parts of the Earth system and for other planets.

Happy Earth Day! The Weird and Wonderful World of Sedimentology

Dr Jon Noad – SediMental Services

Join us as we explore the diverse world of Sedimentology. Drawing from a tranche of past BSRG talks and more, examples will be presented of sedimentary structures in ice and snow, the desert, the sky as well as more conventional settings. Prepare to be baffled by some real head scratchers and wowed by some of Earth’s largest ever structures, and finally head into space to speculate on the sedimentology of exoplanets.

What triggered the Cambrian Explosion?

Professor Rachel Wood – University of Edinburgh

The Cambrian Explosion marks the rise of diverse animal groups ca. 540 million years ago, but the triggers for this revolution remain poorly understood.  The roots of the Cambrian Explosion are in to be found in the preceding Ediacaran, and we can now document a series of pulses of enhanced seawater oxygen stability over the Ediacaran to Cambrian interval. These coincide with pulses of diversification and increased body size in animals, and the biological control of carbonate production was driven by the rise of predation. 

An Introduction to Virtual Outcrops and Virtual Fieldtrips in a time of Global Lockdown

John Howell, Simon Buckley, Nicole Naumann, Magda Chmielewska

Virtual Outcrop Geology Group, University of Aberdeen, and NORCE Research Bergen

A Virtual Outcrop (VO) is a 3D photorealistic model of a cliff or quarry that captures the geological features. Most recently, model sharing across the web has become possible through generic sharing sites such as Sketchfab and purpose-built sites like In this presentation we review the history for virtual outcrops and briefly discuss how they are collected, processed and how to access data that is available for public usage. We will then take a short virtual fieldtrip to the Book Cliffs of Eastern Utah, primarily to illustrate some of our learnings on the topic. We will conclude with a short discussion on the mechanics of how to build a VFT using publicly available data in LIME.

%d bloggers like this: